Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1144120220120010075
Biomedical Engineering Letters
2022 Volume.12 No. 1 p.75 ~ p.84
A digital cardiac disease biomarker from a generative progressive cardiac cine-MRI representation
Gomez Santiago

Romo-Bucheli David
Martinez Fabio
Abstract
Cardiac cine-MRI is one of the most important diagnostic tools used to assess the morphology and physiology of the heart during the cardiac cycle. Nonetheless, the analysis on cardiac cine-MRI is poorly exploited and remains highly dependent on the observer's expertise. This work introduces an imaging cardiac disease representation, coded as an embedding vector, that fully exploits hidden mapping between the latent space and a generated cine-MRI data distribution. The resultant representation is progressively learned and conditioned by a set of cardiac conditions. A generative cardiac descriptor is achieved from a progressive generative-adversarial network trained to produce MRI synthetic images, conditioned to several heart conditions. The generator model is then used to recover a digital biomarker, coded as an embedding vector, following a backpropagation scheme. Then, an UMAP strategy is applied to build a topological low dimensional embedding space that discriminates among cardiac pathologies. Evaluation of the approach is carried out by using an embedded representation as a potential disease descriptor in 2296 pathological cine-MRI slices. The proposed strategy yields an average accuracy of 0.8 to discriminate among heart conditions. Furthermore, the low dimensional space shows a remarkable grouping of cardiac classes that may suggest its potential use as a tool to support diagnosis. The learned progressive and generative representation, from cine-MRI slices, allows retrieves and coded complex descriptors that results useful to discriminate among heart conditions. The cardiac disease representation expressed as a hidden embedding vector could potentially be used to support cardiac analysis on cine-MRI sequences.
KEYWORD
Progressive GANs, Latent space, Cardiac patterns emulation, Cine-MRI
FullTexts / Linksout information
Listed journal information